If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-20x+1600=0
a = -3; b = -20; c = +1600;
Δ = b2-4ac
Δ = -202-4·(-3)·1600
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-140}{2*-3}=\frac{-120}{-6} =+20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+140}{2*-3}=\frac{160}{-6} =-26+2/3 $
| 5-35x+2=47-3x+1 | | -4(x+4)=4(x+4) | | 18=x+50-x+32 | | 33+x=3x-28 | | 3x-30+21=33 | | 3x-28+21=33 | | 3x-28=21 | | 3x-30+33=3x-28 | | 33=3x-28 | | -12.3=x+26 | | 2x+10+6x+10=2x+20 | | 3(f+3)=‐18 | | 3x+47+-17=x=26 | | -4.5x^2+4x+138=0 | | | | | | | | 4(y-6)=20 | | 3x+47+-10=x+26 | | 3+t=15 | | x^2-3=-2x^2-2x | | 4.5x^2+4x=138 | | 5(y-2)=5+2y | | 5(y-2)=5+2y= | | 4.5x^2+4x+138=0 | | 5-25x+-40x-10=-4x-8x | | 7x-5=2x-40 | | 2(2x-5)=9(10-x) | | 3(4x−3)−10x=−19 | | 185-21q=80 | | 3(2x-5)=9(10x8) | | x+26+3x+47=10 |